VLHC Conventional Construction

Peter H. Garbincius HEPAP Subpanel on Long Range Planning June 11, 2001

Agenda

- Geologic Considerations & Siting Studies
- Tunnel, Beam Lines, Enclosures, Facilities and Experimental Areas
- CNA Cost & Schedule Estimating Exercise
- Preliminary Model of Schedule
- Cost Estimate
- ES&H Issues Specific to VLHC
- Design and Cost Challenges

These are NOT siting proposals

• These are three models to study cost sensitivity of underground construction to various geologic conditions.

Lampshades - ring elevations & strata

Off-site Service Areas

Again, these are NOT siting proposals

Cross section of 12 ft. finished dia. tunnel

- also cost estimated a 16 ft. finished dia. tunnel
- specify < 50 gpm/mile avg. water inflow rate

Fermilab Footprint and Experimental Halls

Injection Ramps & Caverns

Underground Enclosures

A/B sites

mid-sites E/V sites

Utility Plants (on surface)

A-site (Stage 1 only) approx. 10 acres

Stage 2 A-&B-sites approx. 40 acres

Schematic of Experimental Area (generic SSC Large Solenoid Detector)

Cost & Schedule Estimating

- Kenny Co. (1997) 3 TeV VLHC Booster
- CNA Consulting Engineers, Minneapolis
- Hatch-Mott-MacDonald, Toronto
- 3 tunnel configurations, unit cost & blocks
- to understand sensitivities and trade-offs
- Inputs:
 - a. geology & siting lampshades, contacts
 - b. components tunnel, shafts, & caverns
 - c. unit costs conditions, depths, contacts

- vary a. and/or b. => New Cost Estimate
- estimate does NOT include:
 - Land Acquisition or Easements (State)
 - Spoils Disposal (revenue neutral?)

CNA Geology, Construction, Schedule Model most varied geologic model studied complete tunnel construction in 5 years

VLHC-I Tunnel Construction and Magnet Installation Plan

CNA Underground Construction Cost Estimate Summary, May 20, 2001

•	Item \$ 1 M units	North	North	South
•	12 ft diameter	Inclined	Flat	Inclined
•	Shafts	\$ 414 M	\$ 263 M	\$ 168 M
•	Caverns (incl. 2 Exp)	\$ 232	\$ 238	\$ 243
•	TBM Tunnels	\$ 866	\$ 1,058	\$ 1,166
•	D&B Tunnels	\$ 36	\$ 36	\$ 36
•	Alignment Risers	\$ 3	\$ 2	\$ 2
•	Portals	\$ 2	\$ 2	\$ 2
•	Misc. (5% non-est)	\$ 83	\$ 85	\$ 86
•	Subtotal	\$ 1,636 M	\$ 1,685 M	\$ 1,703 M
•	EDIA (17.5% external)\$ 286	\$ 295	\$ 298
•	Total	\$ 1,922 M	\$ 1,980 M	\$ 2,001 M

Underground Construction Cost Est.

- EDIA: (external) includes A&E and CM contractors & multiple site studies, does NOT include internal Lab EDIA
- CNA recommends 25-30 % contingency on underground construction, based on level of understanding specific geologic conditions
- ratio 16'/12' = 1.24 (on TBM costs only)
- = 1.16 (total undergrnd costs)

Other Construction Costs

Underground Utilities

- \$ 144 M
- AC power, HVAC, Pumping, Elevators/Stairs
- Surface Buildings & Utilities \$310 M
- Experimental Areas (not estimated)
- Roads (not estimated)
- Power from Utility (not estimated)
- Ground Water Discharge (not estimated)

Special ES&H Issues for VLHC

- Generic ES&H Issues forNew Accelerators
 -J.D. Cossairt et al., FERMILAB-Conf-01/051-E
- Diameter of tunnel -12 feet? or larger?
 - access, egress, install, maintain <=> COST
- Emergency egress every 3 miles (SSC-2.7)
- Minimum fire & smoke hazard
- auto fire suppression for special caverns
- sufficient O2 on vehicles (no refuges)

Special ES&H Issues continued:

- groundwater issues, aquifers, G-P aquitard
- much of tunnel below piezometric surface
- minimize water inflow, construction & ops
- quality of water discharge, pH & particulate
- prevent contamination (conv. & radiation)
- and de-watering of aquifer
- rad: well-free zone of approx. 100 ft. radius

Special ES&H Issues continued:

- heat rejection, mainly Stage 2 Cryo plants
- air-cooling towers or cooling ponds
- (1 acre per MWatt)
- optimal aesthetic/community choices
- spoils/muck disposal (commercial value?)
- impact on communities, especially during
- construction, return areas back in an
- environmentally acceptable condition

Engineering/Design Challenges goal => reduce COST

- simplify underground construction
- initiate R&D on tunneling methodologies
- optimize strategy for TBM utilization
- is there enough space for full Stage 2
 - functionality, e.g. abort?
- optimize size for experiment caverns
 - engineering & physics optimize roof spans
 - optimize deep equipment installation shafts
 - different beam heights for Stage 1 and 2